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Motivation and Background

2



Anonymity matters

● Whistleblowers

● Governmental 
suppression of political 
opinion

● Censorship 
circumvention

http://blog.transparency.org/2016/06/20/new-whistleblower-protection-law-in-france-not-yet-fit-for-purpose/

http://facecrooks.com/Internet-Safety-Privacy/To-be-anonymous-or-not-t
o-be-should-you-use-your-real-name-on-the-Internet.html/

http://www.dmnews.com/social-media/what-if-people-
want-their-internet-anonymity-back/article/338654/
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The internet provides limited anonymity

Sender 
(Alice)

Receiver 
(Bob)Adversary
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From: Alice
To: Bob

From: Alice
To: Bob



A supposed fix - Tor: The Onion Router

● Alice connects to the Tor network 
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A supposed fix - Tor: The Onion Router

● Alice obtains a list of Tor nodes from the Tor network
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A supposed fix - Tor: The Onion Router

● Alice chooses 3 Tor nodes to make a connection to Bob 
● No Tor nodes know the identities of both Bob and Alice
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Traffic analysis attacks

● Adversary correlates Alice and Bob’s traffic
● Only works when adversary intercepts both entry and exit points
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Website fingerprinting (WF) attacks

● Adversary collects database offline and uses it to fingerprint online
● Only needs 1 link in the chain - weaker threat model Receiver

Sender

Tor Network

Adversary
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Simplified WF attack scenario
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● Each website exhibits characteristic load behavior



Var-CNN: Automated feature 
extraction using variations on CNNs
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Why automated feature extraction?

12

● Uses raw Tor traffic sequences: incoming/outgoing direction, timestep
● Resists network protocol changes
● Could discover more optimal features than humans can find



Dilated convolutions 

● Packet sequence inherently time-dependent

13A. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu.
Wavenet: A generative model for raw audio. arXiv, 2016.
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Dilated convolutions 

● Sacrifice fine-grain detail for broader field of view

14A. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu.
Wavenet: A generative model for raw audio. arXiv, 2016.

t-15    t-14   t-13   t-12    t-11    t-10    t-9      t-8     t-7      t-6     t-5     t-4      t-3      t-2     t-1       t

 O        I         I        I         I         I         I        I         I         I        I         I         I         I        I        O



Other techniques

● Cumulative features
○ Total number of packets 
○ Number of incoming and outgoing 
○ Ratio of incoming to total and outgoing to total
○ Total transmission time
○ Average number of packets per second

● Confidence thresholds
○ Threshold for attacker certainty
○ Adjust types of classification made

15
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UM 
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Normal Output

Softmax Layer



Ensemble model
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● Using timesteps should leak more info to attacker
● No past pre-extracted timing features performed well 



Var-CNN Results
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Experimental setup
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● Wang et al. k-NN data set - blocked pages for monitored, popular pages for unmon
● ≤ training data used by competing attacks
● Re-randomize train/test sets and average results over 10 trials
● Metrics

○ True Positive Rate (TPR) - Prop. of monitored sites correctly classified
○ False Positive Rate (FPR) - Prop. of unmonitored sites incorrectly classified

Open-World



Ensemble model and confidence threshold
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● Alone, time model is worse than direction model
● However, their performance is additive

● TPR and FPR decrease as confidence 
threshold increases



Open-world performance

● 5% better TPR than SDAE
● Over a sixth the FPR of SDAE
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● 3% better TPR than k-FP
● Nearly half the FPR of k-FP



DynaFlow: A new defense based on 
dynamically-adjusting flows
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Existing WF defenses

1) Limited defenses - Designed to counter existing attacks
Drawback: No provable guarantees 

2) Supersequence-based defenses - Sends “Supersequence” of web trace
Drawbacks: Requires constantly updated database; does not protect static 
content 

3) Constant-flow defenses - Sends a continuous stream of network traffic 
Drawback: High overheads 
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Advantages of DynaFlow 
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Overview of DynaFlow

Our goal: to construct a defense with similar guarantees as prior 
art but with significantly lowered overheads.

Three Components:
1) Burst-pattern morphing
2) Constant traffic flow with dynamically changing intervals
3) Padding the number of bursts
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Burst-pattern morphing

● Traffic is morphed into fixed bursts: 1 outgoing packet followed by 4 incoming packets
● Dummy packets added to morph traffic 

Before padding:

After padding (red packets are dummy packets):
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Inter-packet timing

● Packets are sent every t seconds 
● The value of t dynamically changes to fit the loading page
● There are three tunable parameters: a, b, T

○ The value of t changes every b bursts
○ Up to a adjustments total 
○ The value of t is chosen from the set T = {t1, … , tk}
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The number of bursts

● The number of bursts is padded to {[m], [m2], [m3], … }
● Advantages of padding to a power of m

○ Significantly mitigate privacy loss
○ Incur reasonably-small overhead 

● Example: when m = 2, the bandwidth overhead is under 100%
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DynaFlow Results
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Open-world eval. against existing attacks
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DynaFlow against existing attacks. All values are in %.

No defense:
Medium security:

High security:



Open-world evaluation against prior art 
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● 31% F1 score: 29% TPR, 11% FPR
○ DynaFlow: 101% overhead (29% TOH, 73% BWOH)
○ Prior art: 138% overhead (40% TOH, 98% BWOH)

● Gap increases for larger F1 scores

Prior art
DynaFlow



Conclusion

● Var-CNN uses novel variants of CNNs to improve upon prior work:
○ Be highly tunable in terms of TPR-FPR trade-off
○ Outperform all prior attacks, all while using ≤ amount of training data

● DynaFlow overcomes challenges of prior WF defenses: 
○ Lower overhead than prior work while providing stronger security
○ Protects dynamic content & no database required

● Current status
○ Preprint on arXiv
○ All code and data sets publically available
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Appendix of Slides
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Var-CNN architecture

● VGG-16 Convolutional Neural Network (CNN) - ImageNet competition
● Multiple blocks composed of multiple layers for deeper feature extraction
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Scaling performance - FPR

● FPR is incredibly important as open-world size increases
● Training on greater numbers of unmonitored sites retains TPR while reducing FPR
● Var-CNN scales better to larger open-worlds than prior-art attacks
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Scaling performance - runtime

● Runtime scales linearly, better than prior models
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The optimal attacker

Overview:
● Knows the exact probability that a website w is visited, generating defended trace 

t
● Uses this information to make the best guess for which website w is visited when 

he sees a trace t
● We can use this information to calculate what the optimal attacker would guess.

Measuring accuracy: 
● F1-score — harmonic mean of precision and recall (TPR)
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Future work

● More powerful deep learning models for Var-CNN
○ Computer vision architectures - DenseNet
○ Recurrent Neural Network architectures - LSTM with Synthetic Gradients 

● Find a better way to determine optimal DynaFlow parameters
○ Currently, we sweep parameters one at a time

● Further reduce DynaFlow overheads
○ Total overhead sum can still exceed 100% for stronger configurations  
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