Var-CNN and DynaFlow: Improved Attacks and Defenses for Website Fingerprinting

Sanjit Bhat (PRIMES) David Lu (PRIMES) Albert Kwon (MIT) Srini Devadas (MIT) sanjit.bhat@gmail.com davidboxboro@gmail.com

May 20th, 2018 PRIMES Conference

Motivation and Background

Anonymity matters

• Whistleblowers

 Governmental suppression of political opinion

 Censorship circumvention

http://blog.transparency.org/2016/06/20/new-whistleblower-protection-law-in-france-not-yet-fit-for-purpose/

http://facecrooks.com/Internet-Safety-Privacy/To-be-anonymous-or-not-to-be-should-you-use-your-real-name-on-the-Internet.html/

http://www.dmnews.com/social-media/what-if-peoplewant-their-internet-anonymity-back/article/338654/ 3

The internet provides limited anonymity

A supposed fix - Tor: The Onion Router

• Alice connects to the Tor network

A supposed fix - Tor: The Onion Router

• Alice obtains a list of Tor nodes from the Tor network

A supposed fix - Tor: The Onion Router

- Alice chooses 3 Tor nodes to make a connection to Bob
- No Tor nodes know the identities of both Bob and Alice

Traffic analysis attacks

- Adversary correlates Alice and Bob's traffic
- Only works when adversary intercepts both entry and exit points

Website fingerprinting (WF) attacks

- Adversary collects database offline and uses it to fingerprint online
- Only needs 1 link in the chain weaker threat model

Receiver

Simplified WF attack scenario

• Each website exhibits characteristic load behavior

Var-CNN: Automated feature extraction using variations on CNNs

Why automated feature extraction?

- Uses raw Tor traffic sequences: incoming/outgoing direction, timestep
- Resists network protocol changes
- Could discover more optimal features than humans can find

Dilated convolutions

• Packet sequence inherently time-dependent

A. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. Wavenet: A generative model for raw audio. arXiv, 2016.

Dilated convolutions

• Sacrifice fine-grain detail for broader field of view

A. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. Wavenet: A generative model for raw audio. arXiv, 2016.

Other techniques

- Cumulative features
 - Total number of packets
 - Number of incoming and outgoing
 - Ratio of incoming to total and outgoing to total
 - Total transmission time
 - Average number of packets per second
- Confidence thresholds
 - Threshold for attacker certainty
 - Adjust types of classification made

Softmax Layer

Ensemble model

- Using timesteps should leak more info to attacker
- No past pre-extracted timing features performed well

Var-CNN Results

Experimental setup

- Wang et al. *k*-NN data set blocked pages for monitored, popular pages for unmon
- ≤ training data used by competing attacks
- Re-randomize train/test sets and average results over 10 trials
- Metrics
 - True Positive Rate (TPR) Prop. of monitored sites correctly classified
 - False Positive Rate (FPR) Prop. of unmonitored sites incorrectly classified

Ensemble model and confidence threshold

- Alone, time model is worse than direction model •
- However, their performance is additive

TPR and FPR decrease as confidence threshold increases

Open-world performance

- 5% better TPR than SDAE
- Over a sixth the FPR of SDAE

- 3% better TPR than *k*-FP
- Nearly half the FPR of *k*-FP

DynaFlow: A new defense based on dynamically-adjusting flows

Existing WF defenses

1) Limited defenses - Designed to counter existing attacks **Drawback:** No provable guarantees

2) Supersequence-based defenses - Sends "Supersequence" of web trace Drawbacks: Requires constantly updated database; does not protect static content

3) Constant-flow defenses - Sends a continuous stream of network traffic Drawback: High overheads

Advantages of DynaFlow

	Low Latency	Low Bandwidth Usage	Strong Security Guarantees	Protects Dynamic Content	No Database Required	Highly Tunable	
DynaFlow	1	1	1	1	1	1	
BuFLO [13]	×	×	×	1	1	×	
Tamaraw [7]	×	×	1	1	1	×	
Supersequence [40]	×	×	1	×	×	×	
Walkie-Talkie [42]	1	1	1	×	×	1	
Glove [29]	×	×	1	×	×	×	
WTF-PAD [21]	1	1	×	1	1	×	
Decoy Pages [32]	1	×	×	1	1	×	
LLaMA [10]	1	1	×	×	×	×	

Overview of DynaFlow

Our goal: to construct a defense with similar guarantees as prior art but with significantly lowered overheads.

Three Components:

- 1) Burst-pattern morphing
- 2) Constant traffic flow with dynamically changing intervals
- 3) Padding the number of bursts

Burst-pattern morphing

- Traffic is morphed into fixed **bursts**: 1 outgoing packet followed by 4 incoming packets
- Dummy packets added to morph traffic

Before padding:

After padding (red packets are dummy packets):

Out	In	In	In	In	Out	In	In	In	In
-----	----	----	----	----	-----	----	----	----	----

Inter-packet timing

- Packets are sent every **t** seconds
- The value of *t* dynamically changes to fit the loading page
- There are three tunable parameters: *a*, *b*, *T*
 - The value of *t* changes every *b* bursts
 - Up to *a* adjustments total
 - The value of **t** is chosen from the set $T = \{t_1, \dots, t_k\}$

The number of bursts

- The number of bursts is padded to *{[m], [m²], [m³], ... }*
- Advantages of padding to a power of *m*
 - Significantly mitigate privacy loss
 - Incur reasonably-small overhead
- Example: when *m* = 2, the bandwidth overhead is under 100%

DynaFlow Results

Open-world eval. against existing attacks

DynaFlow against existing attacks. All values are in %.

-	k-NN [40]		k-FP [14]		Var-CNN		тон	BWOH
	TPR	FPR	TPR	FPR	TPR	FPR	Ton	Diron
No defense:	84.5	2.5	86.3	1.6	89.1	0.7	0	0
Medium security:	15.4	20.6	5.0	1.6	10.8	3.0	23	59
High security:	5.9	69.0	4.4	40.1	0.6	0.9	28	112

Open-world evaluation against prior art

- 31% F1 score: 29% TPR, 11% FPR
 - DynaFlow: 101% overhead (29% TOH, 73% BWOH)
 - Prior art: 138% overhead (40% TOH, 98% BWOH)
- Gap increases for larger F1 scores

Conclusion

- Var-CNN uses novel variants of CNNs to improve upon prior work:
 - Be highly tunable in terms of TPR-FPR trade-off
 - Outperform all prior attacks, all while using ≤ amount of training data
- DynaFlow overcomes challenges of prior WF defenses:
 - Lower overhead than prior work while providing stronger security
 - Protects dynamic content & no database required
- Current status
 - Preprint on arXiv
 - All code and data sets publically available

Acknowledgements

Thank you to:

- Our parents
- Albert Kwon, for providing advice every step of the way
- Prof. Devadas, for giving feedback on the paper and running PRIMES CS
- Dr. Gerovitch and the PRIMES program, for providing research opportunities to high school students and sponsoring AWS bills and a GPU :-)

Appendix of Slides

Var-CNN architecture

- VGG-16 Convolutional Neural Network (CNN) ImageNet competition
- Multiple blocks composed of multiple layers for deeper feature extraction

Scaling performance - FPR

- FPR is incredibly important as open-world size increases
- Training on greater numbers of unmonitored sites retains TPR while reducing FPR
- Var-CNN scales better to larger open-worlds than prior-art attacks

Scaling performance - runtime

• Runtime scales linearly, better than prior models

The optimal attacker

Overview:

- Knows the exact probability that a website *w* is visited, generating defended trace
 t
- Uses this information to make the best guess for which website **w** is visited when he sees a trace **t**
- We can use this information to calculate what the optimal attacker would guess.

Measuring accuracy:

• **F1-score** — harmonic mean of precision and recall (TPR)

Future work

- More powerful deep learning models for Var-CNN
 - Computer vision architectures DenseNet
 - Recurrent Neural Network architectures LSTM with Synthetic Gradients
- Find a better way to determine optimal DynaFlow parameters
 - Currently, we sweep parameters one at a time
- Further reduce DynaFlow overheads
 - Total overhead sum can still exceed 100% for stronger configurations